4.3 Connecting f' and f'' with the Graph of f

First Derivative Test

Let f(x) be continuous on a given open interval that contains c, a critical value

- (1) If f'(x) changes from + to at c, then (c, f(c)) is a local maximum
- (2) If f'(x) changes from to + at c, then (c, f(c)) is a local minimum

Concavity Test

Let f(x) be continuous on a given interval (a, b)

- (1) f(x) is Concave Up if f''(x) > 0 on (a, b)
- (2) f(x) is Concave Down if f''(x) < 0 on (a, b)

Point of Inflection

(c, f(c)) is a Point of Inflection if f'(c) exists and f''(x) changes sign at c.

Second Derivative Test

- (1) If f'(c) = 0 and f''(c) < 0, then (c, f(c)) is a local maximum
- (2) If f'(c) = 0 and f''(c) > 0, then (c, f(c)) is a local minimum
- 1. Use the graph of the function f to estimate where (a) f' and (b) f'' are zero, positive, and negative.

- (a) f' is positive on $(1.5, \infty)$ and on (-1.5, 0), negative on $(-\infty, -1.5)$ and (0, 1.5), and
- f' = 0 at x = -1.5, x = 0, and x = 1.5
- (b) f'' is positive on $(-\infty, -0.8)$ and $(0.8, \infty)$, negative on (-0.8, 0.8), and f'' = 0 at x = -0.8, and x = 0.8
- 2. Use the graph of $\,f'\,$ to estimate where the function $\,f\,$ is $\,$ (a) increasing or $\,$ (b) decreasing, and
- (c) estimate where f has local extreme values.

- (a) f is increasing on $(-\infty, -2]$ and [0, 2], (b) f is decreasing on [-2, 0] and $[2, \infty)$, and
- (c) f has a local maximum at x = -2, and x = 2, and a local minimum at x = 0

For the following problems, use analytic methods to find the intervals on which the function is

- (a) increasing, (b) decreasing, (c) concave up, (d) concave down, then find any (e) local extreme values, and
- (f) inflection points

9.
$$y = 2x^4 - 4x^2 + 1$$

$$y' = 8x^3 - 8x = 8x(x+1)(x-1) \rightarrow c = -1, 0, 1$$

y" = 24 x² - 8 = 8 (3 x² - 1)
$$\rightarrow$$
 k = $\frac{-\sqrt{3}}{3}$, $\frac{\sqrt{3}}{3}$

- (a) y is increasing on the intervals [-1, 0] and $[1, \infty)$
- (b) y is decreasing on the intervals $(-\infty, -1]$ and [0, 1]
- (c) y is concave up on the intervals $\left(-\infty, \frac{-\sqrt{3}}{3}\right)$
- and $\left(\frac{\sqrt{3}}{3}, \infty\right)$
- (d) y is concave down on the interval $\left(\frac{-\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$
- (e) y has a local minimum at x = -1, x = 1, and y has a local maximum at x = 0, and
- (f) y has points of inflection at $x = \frac{-\sqrt{3}}{3}$, $x = \frac{\sqrt{3}}{3}$

23.
$$y = tan^{-1} x$$

$$y' = \frac{1}{1 + y^2}$$
 \rightarrow no critical values

$$y^{\prime\prime} = \frac{-2x}{(1+x^2)^2} \rightarrow k = 0$$

- (a) y is increasing on the interval $(-\infty, \infty)$
- (b) none
- (c) y is concave up on the interval $(-\infty, 0)$
 - (d) y is concave down on the interval $(0, \infty)$
- (e) no extreme values
- (f) point of inflection at the point (0, 0)

25.
$$y = x^{\frac{1}{3}}(x - 4)$$

$$y' = \frac{4}{3}x^{\frac{1}{3}} - \frac{4}{3}x^{\frac{-2}{3}} = \frac{4x-4}{3x^{\frac{2}{3}}} \rightarrow c = 0, 1$$

$$y'' = \frac{4}{9}x^{\frac{-2}{3}} + \frac{8}{9}x^{\frac{-5}{3}} = \frac{4x+8}{x^{\frac{5}{3}}} \rightarrow k = -2, 0$$

- (a) y is increasing on the interval $[1, \infty]$
- (b) y is decreasing on the intervals $(-\infty, 0]$, [0, 1]
- (c) y is concave up on the intervals $(-\infty, -2)$, $(0, \infty)$
- (d) y is concave down on the interval (-2, 0)
- (e) y has a local minimum at x = 1, y has no local maximum
- (f) y has a point of inflection at x = -2
- (no PI at x = 0, because f'(0) does not exist)

28.
$$y = \frac{x}{x^2 + 1}$$

$$y' = \frac{(x^2 + 1)(1) - x(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} \rightarrow c = -1, 1$$

$$y'' = \frac{(x^2 + 1)^2 (-2x) - (1 - x^2) (2(x^2 + 1)(2x))}{(x^2 + 1)^4}$$
 so

$$y'' = \frac{(x^2 + 1)(-2x) - (1 - x^2)(2(2x))}{(x^2 + 1)^3}$$
 so

$$y'' = \frac{-2x^3 - 2x - 4x + 4x^3}{(x^2 + 1)^3} = \frac{2x^3 - 6x}{(x^2 + 1)^3}$$
 so

$$y'' = \frac{2x(x - \sqrt{3})(x + \sqrt{3})}{(x^2 + 1)^3} \rightarrow k = -\sqrt{3}, 0, \sqrt{3}$$

- (a) y is increasing on the interval [-1, 1]
- (b) y is decreasing on the intervals $(-\infty, -1]$, $[1, \infty)$
- (c) y is concave up on the intervals $\left(-\sqrt{3}, 0\right), \left(\sqrt{3}, \infty\right)$
- (d) y is concave down on the intervals $\left(-\infty, -\sqrt{3}\right)$, $\left(0, \sqrt{3}\right)$
- (e) y has a local min at x = -1, and a local max at x = 1
- (f) y has Pl's at $x = -\sqrt{3}$, x = 0, and $x = \sqrt{3}$